Abstract

Samples of toxic scallop (Patinopecten yessoensis) and clam (Saxidomus purpuratus) collected on the northern coast of China from 2008 to 2009 were analysed. High-performance liquid chromatography with post-column oxidation and fluorescence detection was used to determine the profile of the main paralytic shellfish poisoning (PSP) toxins in these samples and their total toxicity. Hydrophilic interaction liquid ion chromatography with mass spectrometric detection confirmed the toxin profile and detected several metabolites in the shellfish. Results show that C1/2 toxins were the most dominant toxins in the scallop and clam samples. However, GTX1/4 and GTX2/3 were also present. M1 was the predominant metabolite in all the samples, but M3 and M5 were also identified, along with three previously unreported presumed metabolites, M6, M8 and M10. The results indicate that the biotransformation of toxins was species specific. It was concluded that the reductive enzyme in clams is more active than in scallops and that an enzyme in scallops is more apt to catalyse hydrolysis of both the sulfonate moiety at the N-sulfocabamoyl of C toxins and the 11-hydroxysulfate of C and GTX toxins to produce metabolites. This is the first report of new metabolites of PSP toxins in scallops and clams collected in China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call