Abstract

CD4+ T cell responses are thought to play a role in type 1 diabetes (T1D). However, detection and characterization of T cells that respond to beta cell epitopes in subjects with T1D has been limited by technical obstacles, including the inherently low frequencies in peripheral blood and variable responsiveness of individual subjects to single epitopes. We implemented a multicolor staining approach that allows direct ex vivo characterization of multiple CD4+ T cell specificities in a single sample. Here we demonstrate and apply that multicolor approach to directly measure the frequency and phenotype of beta cell specific CD4+ T cells in T1D patients and HLA matched controls. For this work we utilized five DR0401 restricted peptides from proinsulin, GAD65, IA-2, and IGRP, which were previously reported as disease relevant epitopes. Surprisingly, although responses to each of these peptides can be readily detected after in vitro expansion, our results indicated that only proinsulin specific T cells were consistently detectable at moderate frequencies in subjects with T1D. Characterization of beta cell specific CD4+ T cells revealed only modest differences between subjects with T1D and healthy controls. Subjects with T1D did have higher proportions of CD45RA negative epitope specific T cells than controls. In patients epitope specific T cells were often CXCR3 positive and a substantial proportion were CCR7 negative, suggesting a Th1-like effector phenotype. Finally, we demonstrated that our multicolor staining approach is compatible with class I multimer analysis, facilitating the characterization of self-reactive CD4+ and CD8+ T cells using a single sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.