Abstract
The short-term performance (Martens hardness and indentation modulus) and the time-dependent creep behavior of polyamide 6 (PA 6) and two PA 6 nanocomposites containing 3.5 wt % montmorillonite (MMT) or 5 wt % halloysite nanotubes (HNT) were analyzed by different depth-sensing indentation techniques in the nano-, microand macro-range of loading as a function of applied load (0.08— 100 N) and temperature (-80—60 °C). Additionally, WAXD and DSC measurements were made to establish the morphology-property relationships of the investigated materials while taking into account the skin-core structure of the injection-moulded samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.