Abstract

A combination of negative ion nano-electrospray ionization Fourier-transform ion cyclotron resonance and quadrupole time-of-flight mass spectrometry was applied to analysis of oversulfation in glycosaminoglycan oligosaccharides of the chondroitin sulfate type from bovine aorta. Taking advantage of the high-resolution and high mass accuracy provided by the FT-ICR instrument, a direct compositional assignment of all species present in the mixture can be obtained. An oligosaccharide fraction containing mainly hexasaccharides exhibited different levels of sulfation, indicated by the presence of species with regular sulfation pattern as well as oversulfated oligosaccharides with one additional sulfate group. Oversulfation can be directly identified from the high-resolution/high mass accuracy FT-ICR mass spectra according to their specific isotopic fine structure. Location of sulfate groups was analyzed by Q-TOF MS and low-energy CID MS/MS. Tetrasulfated hexasaccharides were analyzed by use of collision-induced dissociation at variable collision energy for an unambiguous assignment of the attachment site of the sulfate groups by minimizing unspecific neutral losses. Cleavage of glycosidic bonds gave rise to B- and C-type ions and their respective complementary Y- and Z-type fragment ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call