Abstract

It is unclear whether ovarian borderline tumors (tumors of low malignant potential) are independent entities or whether they are part of a continuum of tumor progression that culminates in ovarian carcinoma. Little is known about genetic abnormalities in borderline tumors because of the difficulty of growing them in culture for chromosome studies, and because the low ratio of tumor to nontumor cells can interfere with molecular genetic examination. To circumvent these problems, we performed comparative genomic hybridization (CGH) on 10 serous borderline tumors from nine patients, using microdissection to enrich the samples for tumor DNA and reduce contamination from stromal and inflammatory cells. CGH analysis revealed that three of the tumors had detectable chromosomal imbalances, whereas seven were in a balanced state. In those tumors with imbalances, the number of abnormalities ranged from 3–6 per tumor. Additional studies by fluorescence in situ hybridization (FISH) on disaggregated nuclei confirmed the imbalances detected by CGH, revealed one tumor to be hypertriploid, and indicated that the remaining tumors were diploid and in a balanced state. All abnormalities observed in the aneuploid cases are consistent with chromosomal aberrations previously reported for ovarian carinomas, providing further evidence that some borderline tumors are part of a continuum of tumor progression. These results also suggest that there may be different mechanisms leading to borderline tumor formation, including one associated with multiple chromosomal imbalances, and others that do not involve imbalances detectable by CGH. Genes Chromosomes Cancer 25:307–315, 1999. © 1999 Wiley-Liss, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call