Abstract
Orthogonal matching pursuit (OMP) is the canonical greedy algorithm for sparse approximation. In this paper we demonstrate that the restricted isometry property (RIP) can be used for a very straightforward analysis of OMP. Our main conclusion is that the RIP of order K+1 (with isometry constant δ <; [ 1/( 3√K)]) is sufficient for OMP to exactly recover any K-sparse signal. The analysis relies on simple and intuitive observations about OMP and matrices which satisfy the RIP. For restricted classes of K-sparse signals (those that are highly compressible), a relaxed bound on the isometry constant is also established. A deeper understanding of OMP may benefit the analysis of greedy algorithms in general. To demonstrate this, we also briefly revisit the analysis of the regularized OMP (ROMP) algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.