Abstract

Purpose – The purpose of this paper is to study the effect of particle shapes (spherical particle and nonspherical fiber) on their orientation distributions in indoor environment. Design/methodology/approach – This paper adopted a particle model to predict the fibrous particle flow and distribution, and analyzed the orientation distributions of nonspherical fiber particles and spherical particles in airflows like indoor places. Fokker-Planck model was employed to solve the orientation behavior of nonspherical fiber particles. Findings – The simulation results discover that the nonspherical airborne fiber particles have very different characteristics and behaviors and their orientation distributions are totally different from the uniform distribution of spherical particles. The investigation of the particle orientation tensor and orientation strength indicates that the airflow field becomes more anisotropic due to the suspended fibers. The airborne fiber particles increase the viscosity of the room airflow due to the fiber induced additional viscosity. Originality/value – Orientation tensor, strength and additional viscosity in fibrous flow are seldom investigated indoor. This research reveals that the particle shape has to be considered in the analysis of particle transport and distribution in indoor places as most suspended indoor particles are nonspherical.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.