Abstract

Laser desorption/ionization time-of-flight mass spectra of three thermally labile low molecular weight organoselenium compounds (selenomethionine, selenoethionine, trimethylselenonium iodide) in human urine matrix have been obtained by using surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). Four active layers, active carbon, silica sol-gel, and silica sol-gel impregnated with crown ether and with active carbon, were deposited on three different support substrates: (i) microscope slide coverslips; (ii) Al foil; and (iii) Cu tapes. Primarily protonated molecular ions and alkali metal adducts were observed in the mass spectra. A mixed-silica sol-gel and active carbon substrate active layer gave the best signal response for all compounds. Sol-gel substrates offered very clean backgrounds compared to the pure active carbon layers; however, the mass spectral signal intensities acquired were substantially lower for the sol-gel surfaces than those of the pure active carbon under the same conditions. Cu tape and Al foil support materials gave strong mass spectra of molecular ions and alkali metal molecular ion adducts, with lower Na and K adducts found with the Cu tape than with Al foil. Glass coverslips gave no response under all experimental conditions examined. Aerosol deposition was used to prepare SALDI substrates to avoid the localized "sweet spot" phenomenon encountered in conventional SALDI substrate preparation. Various nebulizers were examined and found to be effective in producing SALDI films with controlled and reproducible thicknesses. We were able to obtain exact mass identification of all three selenium species by high-resolution TOF-MS. To the best of our knowledge, this is the first time low molecular weight organoselenium compounds have been identified by SALDI-high-resolution TOF-MS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.