Abstract

BackgroundTemporary anchorage devices (TADs) are maximum anchorages that have been widely used in orthodontic treatment. The aim of the study was to uncover whether a history of periodontitis would influence microbiome colonization on the TAD surface.ResultsPatients were grouped by periodontal evaluations before the orthodontic treatment. Patients with healthy periodontal conditions were classified as the healthy group, and patients diagnosed with periodontitis stage II or even worse were classified as the periodontitis group. Scanning electron microscopy (SEM) was used to analyze the existence of biofilm on the surface of 4 TADs from the healthy group and 4 TADs from the periodontitis group. Fifteen TADs from the healthy group and 12 TADs from the periodontitis group were collected. The microorganisms on the surface of TADs were harvested and analyzed by 16S rRNA gene sequencing. α-diversity indices and β-diversity indices were calculated. Wilcoxon’s test was used to determine differences between genera, species as well as KEGG functions. SEM analysis revealed bacteria colonization on the surface of TADs from both groups. Principal coordinate analysis (PCoA) based on β diversity revealed differential sample clusters depending on periodontal conditions (P < 0.01). When comparing specific genera, Fusobacterium, Porphyromonas, Saccharibacteria_(TM7)_[G-1], Dialister, Parvimonas, Fretibacterium, Treponema were more enriched in TADs in the periodontitis group. In the KEGG analysis, TADs in the periodontitis group demonstrated enriched microbial activities involved with translation, genetic information processing, metabolism, and cell motility.ConclusionsThis analysis elucidated the difference in total composition and function of TADs oral microorganisms between patients periodontally healthy and with periodontitis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call