Abstract
A numerical technique is described that can efficiently compute solutions of interface problems. These are problems with data, such as the coefficients of differential equations, discontinuous or even singular across one or more interfaces. A prime example of these problems are optical waveguides, and as such the scheme is applied to Maxwell's equations as they are formulated to describe light confinement in Bragg fibers. It is based on standard finite differences appropriately modified to take into account all possible discontinuities across the waveguide's interfaces due to the change of the refractive index. Second- and fourth-order schemes are described with additional adaptations to handle matrix eigenvalue problems, demanding geometries and defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.