Abstract
When a material absorbs incident light, electrons can undergo an optical transition between valence and conduction bands depending on the frequency and polarization of light. In atomic-layered materials such as bismuthene, even a small change in its geometrical structure, e.g. from the buckled to puckered lattices, completely alters its electronic properties and, accordingly, its possible optical transitions. Since the strength and selection rule of optical transitions can be understood by analyzing the electron-photon dipole vectors, we calculate dipole vectors as a function of electronic wave vector between two quantum states in buckled and puckered bismuthene monolayers. We find that each of the bismuthene structures has its own, unique dipole vectors, implying a certain geometrical dependence of the dipole vectors. These materials are expected as a potential candidate for optoelectronics applications. Furthermore, one would consider applying various light polarization in these materials when the optical transition rules are well understood.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.