Abstract

Molybdenum disulfide (MoS2) is considered as a promising alternative to conventional semiconductor materials that used in the IC industry because of its novel properties. In this paper, we explore the optical and electronic properties of MoS2 for photodetector and transistors applications. This simulation is done using ‘DFT materials properties simulator’. Our findings show that mono- and multi-layer MoS2 is suitable for conventional and tunnel FET applications due to direct and indirect band-gap respectively. The bulk MoS2 crystal, which are composed of stacked layers have indirect bandgap and mono-layer MoS2 crystal form direct bandgap at the K-point of Brillouin zone. Indirect bandgap of bulk MoS2 crystal implies that phonons need to be involved in band-to-band tunneling (BTBT) process. Degenerately doped semiconductor, which is basically spinning the Fermi level, changing the DOS profile, and thinning the indirect bandgap that allow tunneling from valence band to conduction band. The optical properties of MoS2 is explored in terms of Absorption coefficient, extinction coefficient and refractive index. Our results shows that a MoS2 based photodetector can be fabricate to detect light in the visible range (below 500nm). It is also observed that the MoS2 is most sensitive for the light of wavelength 450nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call