Abstract

Recent advances in digitization, artificial intelligence, and wireless networking are revolutionizing the traditional transportation networks and the automotive industry, leading for instance to the widespread adoption of ride-sharing services and the emergence of self-driving vehicles. As a result, a considerable rise in the volume of infotainment data consumed by the vehicles’ passengers is expected. To support such traffic loads, we explore leveraging vehicles as part of the cellular infrastructure. This paper investigates and quantifies the performance gains that using Vehicle-to-Vehicle (V2V) communication to form relay clusters would enable, including (1) improving opportunistic channel access to the cellular infrastructure by relaying the cluster’s traffic through the vehicle seeing the best channel quality; and (2) balancing traffic loads across cells through cluster multihoming. We introduce a stochastic geometric model allowing us to provide a deeper understanding of the possible gains associated with cluster-based opportunistic relaying and its sensitivity to the system parameters, e.g., base station density, vehicle density on the roads, etc. We develop a natural network utility maximization problem to serve as a baseline to evaluate the performance of a simpler distributed cluster management algorithm which we show to be near-optimal. Overall the results suggest that <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$10-20\times$</tex-math></inline-formula> gains in the vehicles’ shared rate can be achieved along with significant fairness improvements, while other mobile devices also benefit from the proposed network architecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.