Abstract
In this paper we consider a like-queue production system in which server startup and breakdowns are possible. The server is turned on (i.e. begins startup) when N units are accumulated in the system and off when the system is empty. We model this system by an M[x] /M/1 queue with server breakdowns and startup time under the N policy. The arrival rate varies according to the server's status: off, startup, busy, or breakdown. While the server is working, he is subject to breakdowns according to a Poisson process. When the server breaks down, he requires repair at a repair facility, where the repair time follows the negative exponential distribution. We study the steady-state behaviour of the system size distribution at stationary point of time as well as the queue size distribution at departure point of time and obtain some useful results. The total expected cost function per unit time is developed to determine the optimal operating policy at a minimum cost. This paper provides the minimum expected cost and the optimal operating policy based on assumed numerical values of the system parameters. Sensitivity analysis is also provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.