Abstract
This paper explores the applicability of neural networks for analyzing the uncertainty spread of structural responses under the presence of one-dimensional random fields. Specifically, the neural network is intended to be a partial surrogate of the structural model needed in a Monte Carlo simulation, due to its associative memory properties. The network is trained with some pairs of input and output data obtained by some Monte Carlo simulations and then used in substitution of the finite element solver. In order to minimize the size of the networks, and hence the number of training pairs, the Karhunen–Loéve decomposition is applied as an optimal feature extraction tool. The Monte Carlo samples for training and validation are also generated using this decomposition. The Nyström technique is employed for the numerical solution of the Fredholm integral equation. The radial basis function (RBF) network was selected as the neural device for learning the input/output relationship due to its high accuracy and fast training speed. The analysis shows that this approach constitutes a promising method for stochastic finite element analysis inasmuch as the error with respect to the Monte Carlo simulation is negligible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.