Abstract

For designing efficient lubrication system of an aeroengine bearing chamber, sufficient knowledge on oil/air two-phase flow characteristics is required. When analyzing bearing chamber two-phase flow, the essential prerequisite is quantifying the oil ligaments, which are detached from bearing rotary elements and shed into the bearing chamber. Related investigations are mainly targeted at liquid shedding on the rotating disk as opposed to the bearing rotary elements. Moreover, the research based on bearing rotary elements is conducted by experiment. Due to the limited operating conditions, experimental studies cannot guide engineering applications. To overcome these limitations, a theoretical model is established in this paper, for revealing the mechanism of oil shedding from bearing rotary elements and quantifying the shedding ligaments. The theoretical model is validated against experimental results from classical studies. In addition, the correlation for shedding ligaments number based on aeroengine bearing structural and operational parameters is obtained via theoretical analysis. The analytical results demonstrate that oil shedding and ligaments formation appear at the edge of bearing inner race outer-periphery. The number of shedding ligaments increases with the rise of shaft rotational speed while decreases with the growth of oil viscosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.