Abstract

The effect of lubricant viscosity on the temperature and thickness of oil film on a piston ring in a diesel engine was analyzed by using unsteady state thermohydrodynamic lubrication analysis, i.e., Reynolds equation and an unsteady state two-dimensional energy equation with heat generated from viscous dissipation. The oil film viscosity was then estimated by using the mean oil film temperature and the shear rate for multigrade oils. Since the viscosity for multigrade oils is affected by both the oil film temperature and shear rate, the viscosity becomes lower as the shear rate between the ring and liner becomes higher. Under low load conditions, the viscosity decreases due to temperature rise and shear rate, while under higher load conditions, the decrease in viscosity, is attributed only to the shear rate. The oil film thickness between the ring and liner decreases with a decrease of the oil viscosity. The oil film thickness calculated by using the viscosity estimated by both the shear rate and the oil film temperature gave the smallest values. For multigrade oils, the viscosity estimation method using both the mean oil film temperature and shear rate is the most suitable one to predict the oil film thickness. Moreover, the heat transfer at ring and liner surfaces was examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call