Abstract

Information on the olfactory system in antennae of Geometridae moths is very limited, and odorant-binding proteins (OBPs) working as transporters of lipophilic odors have not been identified. In the first investigation on this family of insects, we examined antennal OBPs of the Japanese giant looper, Ascotis selenaria cretacea. RT-PCR experiments using several pairs of degenerate primers designed from known cDNA sequences encoding lepidopteran OBPs successfully amplified partial sequences of two pheromone-binding proteins (PBPs), named AscrPBP1 and AscrPBP2 in reference to their corresponding nucleotide sequence homologies with other PBPs. Using 5'- and 3'-rapid amplification of cDNA end strategies, a cDNA clone for AscrPBP1 encoding a protein of 141 amino acids was isolated. Western blotting with the antiserum against recombinant AscrPBP1 overexpressed in Escherichia coli showed that the AscrPBP1 gene was more strongly expressed in male antennae than in female antennae. Furthermore, natural AscrPBP1was isolated by immunoprecipitation with the antiserum, and its binding ability was evaluated by using synthetic sex pheromonal compounds with a C(19) chain. The result indicated that AscrPBP1 bound not only the pheromone components, 3,6,9-nonadecatriene and its 3,4-epoxy derivative, but also unnatural 6,7- and 9,10-epoxy derivatives. While no general odorant-binding proteins (GOBPs) were amplified in the RT-PCR experiments, two antisera prepared from GOBP1 and GOBP2 of Bombyx mori suggested the occurrence of at least two GOBPs in the A. s. cretacea antennae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call