Abstract

This paper proposes and experimentally demonstrates, for the first time, two new candidate pulse shapes for carrierless amplitude and phase modulation in the context of visible light communications. It is commonly accepted that the pulse shape at the heart of the Hilbert pair used to generate the required orthogonal signal spaces should be the square-root raised cosine. In this paper, we introduce two additional candidate pulse shapes, namely the first csv pulse and the so-called better-than-Nyquist pulse. We demonstrate experimentally that the better-than-Nyquist pulse offers superior bit-error rate performance compared to the square-root raised cosine and Xia pulses under additive white Gaussian noise channel conditions, while offering lower computational complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call