Abstract

A technique for tracing rays and fields with several numerically specified reflectors by using geometrical optics (GO) is described. The ray paths are determined by launching individual rays from the feed point and following them by reflection from all the reflector surfaces to the output aperture of the last reflector. This procedure is referred to as kinematic ray tracing. Thereafter, the amplitude, phase and polarization of the E-field is traced along the ray paths to the aperture; this is referred to as dynamic ray tracing. The aperture field is then integrated to find the aperture efficiency, which is factorized into convenient subefficiencies. The technique has been implemented in a computer code that has been used to analyze the proposed new shaped-offset dual-reflector feed for the spherical reflector antenna at the Arecibo Observatory.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.