Abstract

The internal structure of a normal shock wave in a perfect gas heavily laden with particles having a distribution of sizes is machine computed by numerical integration. The results of a small-perturbation analysis for weak shock waves and one particle size compare well with the machine-computed results for these restricted conditions. Both methods indicate that the thickness of weak shock waves increases in proportion to the particle size squared and inversely with the shock strength. For conditions typical of solid propellant-rocket motor exhaust streams the computed shock-wave thickness is several inches. With such computed results both the amount and the size distribution of suspended particles can be found individually from shock-wave measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.