Abstract

The objective of this paper is to analyze the yeast cell, liver cell and blood cell under both infected and healthy conditions by applying electrical signal through dual nanoprobe from source to cell. Knowledge of nanoprobe based bio-cell analysis can be used to differentiate infected cells from healthy ones, since their electrical behaviour is different. The voltage can be applied either inside the cytoplasm penetrating the cell wall, or at the outer surface of cell membrane. In this paper, the simulation has been carried out by applying voltage inside the cytoplasm using ABAQUS 6.10 CAE, powerful finite element software and the results obtained from simulation shows current flow healthy yeast and dead yeast cells are 1·9nA and 34pA respectively whereas the value of the current measured for the leukaemia affected blood cell is 21·2nA, being 2% less than the White Blood Cell (WBC). Since the conductivity of the cytoplasm of the healthy cell is theoretically higher than that of dead or infected cell, which is verified by simulation. The results from simulation show that the measured cell current from liver tumour cell is 2-7 times larger than healthy liver cell including membrane as it is supposed to be since the conductivity of cell including cell membrane is theoretically greater for dead or infected cell than healthy cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.