Abstract

Epilepsy is one of the most common neurological disorders characterized by transient and unexpected electrical disturbance of the brain. The electroencephalogram (EEG) is an invaluable measurement for the purpose of assessing brain activities, containing information relating to the different physiological states of the brain. It is a very effective tool for understanding the complex dynamical behavior of the brain. This paper presents the application of empirical mode decomposition (EMD) for analysis of EEG signals. The EMD decomposes a EEG signal into a finite set of bandlimited signals termed intrinsic mode functions (IMFs). The Hilbert transformation of IMFs provides analytic signal representation of IMFs. The area measured from the trace of the analytic IMFs, which have circular form in the complex plane, has been used as a feature in order to discriminate normal EEG signals from the epileptic seizure EEG signals. It has been shown that the area measure of the IMFs has given good discrimination performance. Simulation results illustrate the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.