Abstract

Direct numerical simulations (DNS) of turbulent flow through an asymmetric plane diffuser, consisting of a flat wall and an inclined wall, were performed using a high-order finite difference method, to reveal the relationship between turbulence and flow separations under negative pressure gradients. A typical feature of this flow field is the non-steady three-dimensional separation region formed near the inclined wall. At the opening of the diffuser, low speed streaks in wall turbulence cause the initial non-steady separation layer, which includes small-scale reverse flow regions. Because turbulent eddies growing from this initial separation suppress the separated flow, a small reattachment section is formed downstream. When turbulent eddies start to decay and the negative pressure gradient begins to dominate, the flow separates again, and then a large-scale separation region is formed. In summary, the intensity of turbulent eddies affects the formation of the separation and reattachment regions near the inclined wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.