Abstract

Analysis of dynamic respiratory system mechanics is generally based on a resistance-compliance model in which nonlinearities of the respiratory mechanics indices are not considered. The recently developed SLICE method analyzing consecutive volume slices of the tidal volume was used for determination of non-linear volume-dependent respiratory system mechanics. Volume-dependent compliance C(Slice) and resistance R(Slice) were compared with C(MLR) and R(MLR) obtained by standard multiple linear regression analysis (MLR). Prospective observational study. Pediatric intensive care unit in a university hospital. Fifteen pediatric patients, aged 24 days to 9.6 yrs, weighing 3-67.5 kg. None. With respect to their pulmonary status, the patients were grouped into three clinical groups: patients with no lung diseases, patients with restrictive lung diseases, and patients with obstructive lung diseases. All patients were mechanically ventilated via a cuffed endotracheal tube in the pressure-controlled mode. Flow and airway pressure were measured at the proximal end of the tube and tracheal pressure was continuously calculated. Respiratory mechanics were determined either with the SLICE method or, as reference, by using standard MLR. In most patients, the pressure-volume relationship was nonlinear, particularly in patients with restrictive and obstructive lung diseases. In the presence of considerable nonlinearity, the volume-dependent respiratory mechanics indices obtained by the SLICE method showed better agreement between recalculated and original pressure-volume loops compared with the MLR results. Furthermore, signs of overdistension of the patient's lung became obvious when using the SLICE method, whereas they were undetected by MLR. The SLICE method is well suited for the analysis of nonlinear volume-dependent respiratory system mechanics in pediatric patients. The SLICE method may be used as a first step toward an adaptation of ventilator settings with respect to the actual mechanical status of the patient's respiratory system, and, to prevent pulmonary overdistension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.