Abstract

This paper investigates the effect of a metal oxide arrester on the ferroresonance behaviour of a transformer connected in parallel. It is known that the arresters may in some cases cause ferroresonance ‘dropout’. This aspect is examined in detail here by proper modelling of the nonlinear characteristics such as arrester characteristics and transformer saturation. Time-domain simulation has been carried out using a fourth-order Runge–Kutta method and the results were corroborated using EMTP. The results reveal that the presence of the arrester has a mitigating effect on ferroresonant overvoltages. Extensive simulations have been carried out to analyse the sensitivity with respect to arrester parameters, transformer saturation characteristics and the amplitude of the voltage source occurring in the Thevenin equivalent of the circuit. The presence of the arrester has a significant effect on the onset of chaos, the range of parameter values for which chaos persists and the magnitude of ferroresonant over voltages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.