Abstract

The Volterra series representation is a direct generalisation of the linear convolution integral and has been widely applied in the analysis and design of nonlinear systems, both in the time and the frequency domain. The Volterra series is associated with the so-called weakly nonlinear systems, but even within the framework of weak nonlinearity there is a convergence limit for the existence of a valid Volterra series representation for a given nonlinear differential equation. Barrett (1965) [1] proposed a time domain criterion to prove that the Volterra series converges within a given region for a class of nonlinear systems with cubic stiffness nonlinearity. In this paper this time-domain criterion is extended to the frequency domain to accommodate the analysis of nonlinear oscillators subject to harmonic excitation. A common and severe nonlinear phenomenon called jump, a behavior associated with the Duffing oscillator and the multi-valued properties of the response solution, is investigated using the new frequency domain criterion of establishing the upper limits of the nonlinear oscillators, to predict the onset point of the jump, and the Volterra time and frequency domain analysis of this phenomenon are carried out based on graphical and numerical techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call