Abstract

Abstract In this article, the solution to the time-fractional Fisher equation is determined using two well-known analytical techniques. The suggested approaches are the new iterative method and the optimal auxiliary function method, with the fractional derivative handled in the Caputo sense. The obtained results demonstrate that the suggested approaches are efficient and simple to use for solving fractional-order differential equations. The approximate and exact solutions of the partial fractional differential equations for integer order were compared. Additionally, the fractional-order and integer-order results are contrasted using simple tables. It has been confirmed that the solution produced using the provided methods converges to the exact solution at the appropriate rate. The primary advantage of the suggested method is the small number of computations needed. Moreover, it may be used to address fractional-order physical problems in a number of fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.