Abstract

Abstract Many torque carrying members have circular sections such as shafts. However, there are certain structural members like automotive chassis frames, cross members and machine frames which are often subjected to twisting loads and their cross sections are non circular. several methods were developed to analyze such sections such as Saint Venant’s semi inverse method, Prandtl’s elastic membrane analogy...etc. In this paper, the second order partial differential stress function equation for non-circular torsional members is applied on a rectangular section for different b/h (height /width of section) values and the solutions for maximum torsional shear stress are found by employing second order finite difference method. The results are compared to the results obtained from commercial finite element software (ANSYS 10) and by direct solution of the stress function equation using analytical correlations available for rectangular sections. The results obtained by different approaches are in close congruence with a percentage deviation of only 3.22. It is observed that, in implementing second order finite difference scheme, the error in estimating stress is proportional to S 2 . Where “S” is the grid size. Keywords: Non-Circular Section, Prandtl’s stress function, Finite difference scheme, Grid size

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.