Abstract

Grid-forming control techniques are required to achieve a high penetration of power electronics-based renewable energy sources for decarbonized electric systems. However, different grid-forming control strategies can operate in the same grid, and grid stability shall be warranted. This paper analyses the use of different grid-forming control strategies for diode rectifier-based wind power plants. The analysed grid-forming controllers are the well-known droop control, an advanced droop control, and the virtual synchronous machine control. The controllers’ analysis validates the three grid-forming controllers’ interoperability, identifying each control parameter’s contribution to the stability of each system state variable. Furthermore, the analysis allows a better tuning of the control parameters. Additionally, a fault-ride-through strategy that improves the system restoration after faults is proposed and validated. The proposed fault-ride-through strategy achieves a soft restoration of the active power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.