Abstract

The mechanism of the VT variation difference between NMOS and PMOS is investigated. It is clarified that there is no correlation between VT and physical parameters such as gate length, gate width, gate oxide thickness, gate taper angle, sidewall width, channel strain, and gate poly-Si grain structure by integrated physical analysis (IPA). In IPA, the physical parameters of transistors with VT of -5sigma, median, and +5sigma are evaluated. It is also clarified that the variations of gate depletion and random charges at the gate oxide interface are not the dominant factors of VT variation, by electrical analyses using the Takeuchi plot. In these analyses, VT variations with varying process parameters are investigated. As a result of the analyses, only random channel dopant fluctuation (RDF) has a significant effect on VT variation. Since the simple RDF model alone cannot explain the VT variation difference between NMOS and PMOS, the channel boron clustering model is proposed as a possible mechanism of NMOS VT enhancement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.