Abstract
Chemical profiles of the Black Sea suboxic zone show a distribution of nitrogen species which is traditionally associated with denitrification, i.e. a secondary nitrite maximum associated with nitrate depletion and a N(2) gas peak. To better understand the distribution and diversity of the denitrifier community in the Black Sea suboxic zone, we combined a cultivation approach with cloning and sequencing of PCR-amplified nitrite reductase (nirS and nirK) genes. The Black Sea suboxic zone appears to harbour a homogeneous community of denitrifiers. For nirK, over 94% of the sequences fell into only three distinct phylogenetic clusters, and for nirS, a single closely related sequence type accounted for 91% of the sequences retrieved. Both nirS and nirK genes showed a dramatic shift in community composition at the bottom of the suboxic zone, but overall, nirK-based community composition showed much greater variation across depths compared with the highly uniform distribution of nirS sequences throughout the suboxic zone. The dominant nirK and nirS sequences differed at the amino acid level by at least 17% and 8%, respectively, from their nearest database matches. Denitrifying isolates recovered from the suboxic zone shared 97% 16S rRNA gene sequence similarity with Marinobacter maritimus. Analysis of the recently discovered nirS gene from the anammox bacterium Candidatus'Kuenenia stuttgartiensis' revealed that mismatches with commonly used primers may have prevented the previous detection of this divergent sequence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.