Abstract
To determine the composition of niobium–rare-earth ores by atomic emission spectrometry and inductively coupled plasma mass spectrometry, two procedures are developed for sample preparation based on autoclave decomposition and flux fusion. Autoclave decomposition is carried out in a mixture of HF and HNO3 at a temperature of up to 220°C and a pressure of up to 160 atm using a developed system with resistive heating. Subsequent evaporation to dry salts ensures the removal of F– ions and silicon as SiF4. The residue is dissolved in a mixture of HCl and H2O2 at 160°C under elevated pressure. The resulting solutions (10% with respect to HCl with the addition of H2O2) are diluted before measurements. The dissolution process is monitored for each sample using stable highly enriched isotopes of 91Zr, 100Mo, 149Sm, and 178Hf. The second procedure is based on fusing samples with a mixture of Na2CO3 and Na2B4O7 at 1050°C in a muffle furnace and dissolving the resulting melt in a mixture of HCl and H2O2. The procedures were tested using the national (NFS-23) and foreign standard samples of composition (OREAS-462, 463, 464, 465, Australia) and real samples of niobium–rare-earth ores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.