Abstract

Excitation functions for 232Th(n,γ) and 232Th(n,2n) reactions from reaction threshold to 20 MeV were calculated using TALYS-1.9 nuclear code by invoking suitable options for the level densities, optical model potentials, pre-equilibrium effects and γ-ray strength functions. In earlier studies, theoretical plots for 232Th(n,γ) and 232Th(n,2n) reaction cross-sections were obtained by using EMPIRE 3.2 and TALYS 1.9 codes with default parameters, however none of the reported plots could match with the corresponding experimental cross-sections reported in EXFOR data particularly between 14-20 MeV. The results of the present study reveal that by using a combination of specific input parameters in TALYS 1.9 code, the theoretical evaluation of the cross sections favour a higher pre-equilibrium rate for the harder spectrum. Moreover the estimated cross-sections match fairly well with the corresponding experimental data (EXFOR database) as well as with the evaluated data files (ENDF/VII.0, JENDL-4.0). The results of the present study are important for the validation of nuclear model approaches with increased predictive power for (n,xn) cross-sections and particularly for the application of thorium based fuel in Accelerator-Driven Sub-critical System.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call