Abstract

Chemical exposures can adversely impact fetal development. For many compounds, including common flame retardants, the mechanisms by which this occurs remain unclear, but emerging evidence suggests that disruption at the level of the placenta may play a role. Understanding how the placenta might be vulnerable to chemical exposures is challenging due to its complex structure. The primary objective of this study was to develop a method for detecting placental neurotransmitters and related metabolites without chemical derivatization so changes in the abundance and spatial distribution of neurotransmitters in rat placenta following chemical exposure could be determined using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging. Without chemical derivatization, 49 neurotransmitters and their related metabolites were putatively identified in untreated rat placenta sections using mass measurement accuracy and spectral accuracy. A few neurotransmitters were less abundant in placentas that were exposed to various flame retardants and were further investigated by KEGG metabolic pathway analysis. Many of these downregulated neurotransmitters shared the same enzyme responsible for metabolism, aromaticl-amino acid decarboxylase, suggesting a mechanistic role. These data constitute a new approach that could help identify novel mechanisms of toxicity in complex tissues. Graphical abstract.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.