Abstract

ABSTRACTThe senescence-accelerated mouse (SAM) is an autogenic senile murine model characterized by early cognitive impairment and age-related deterioration of learning and memory. The present study investigated the alternations of neuronal nitric oxide synthase (nNOS) expression in frontal cortex and hippocampus in the aging process of SAM-prone 8 (SAMP8) and SAM-resistant 1 (SAMR1) mice. The results demonstrated that the expression of nNOS was upregulated in the frontal cortex, but downregulated in the hippocampus in SAMP8. Further, age-related increases of astrogliosis were seen in the cortex and hippocampi of aged SAMP8 and SAMR1, as revealed by the expression of the astrocyte specific marker, glial fibrillary acidic protein (GFAP). Indeed, astrogliosis in aged SAMP8 was significantly greater than that of aged SAMR1. Our results suggest the possibility of a correlation between the downregulation of nitric oxide (NO) in the hippocampus and reported learning and memory deficits in SAMP8. However, the toxic effects of NO and age-related increases of astrogliosis, may have contributed to abnormal alterations in metabolism and neurochemical mechanisms in aged SAMP8.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.