Abstract

Machine learning techniques have been successfully applied to classifying an extensive range of phenomena in quantum theory. From detecting quantum phase transitions to identifying Bell non-locality, it has been established that classical machines can learn genuine quantum features via classical data. Quantum entanglement is one of the uniquely quantum phenomena in that range, as it has been shown that neural networks can be used to classify different types of entanglement. Our work builds on this topic. We investigate whether distinct models of neural networks can learn how to detect catalysis and self-catalysis of entanglement for pure states. Additionally, we also study whether a trained machine can detect another related phenomenon - which we dub transfer knowledge. As we build our models from scratch, besides making all the codes available, we can study a whole gamut of paradigmatic measures, including accuracy, execution time, training time, bias in the training data set and so on.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.