Abstract
Approaches based on neural network classifiers to the detection of computer attacks are considered. The problems of training such classifiers are discussed. Data sets on computer attacks for wired and wireless systems are considered. The results of evaluating such sets by the degree of imbalance are given. The problems of learning on unbalanced data sets and approaches to balancing the training set in the case of rare attacks, including those using generative adversarial networks, are described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.