Abstract

With unique mechanical properties, negative stiffness (NS) structures have presented significant advantages in energy absorption. In recent years, NS structures consisting of periodically arranged curved beams have attracted comprehensive attention. However, the curved beams of the current report mainly focus on geometrical parameters in specific configurations, and the variety of the reported geometrical configurations of the flexible beams is relatively limited. In this paper, a B-spline curved beam design method is proposed. A static analysis model of a B-spline curved beam is developed to investigate the force-displacement relations of curved beams in different configurations. The configuration for the B-spline curved beam is obtained, and the relation between the geometric parameters and the mechanical properties of the B-spline curved beam is discussed. Then the mechanical properties of NS structures with periodically arranged B-spline curved beams are analyzed by the finite element method, and the experiments verified the correctness of the simulation method. Finally, the force-displacement relation and energy-absorption properties of gradient NS structures with B-spline curved beams are discussed. The results indicate that the NS structure with B-spline curved beams has repeatability and effective energy absorption properties. The deformation form of the NS structure can be modulated by gradient NS design, and the energy absorption properties of the NS structure can be improved effectively. The research can provide a reference for the design of NS structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call