Abstract

In the present work, the advantages of a new, 100 kV platform equipped with a massive gold cluster source for the analysis of native biological surfaces are shown. Inspection of the molecular ion emission as a function of projectile size demonstrates a secondary ion yield increase of ~100× for 520 keV Au(400)(4+) as compared to 130 keV Au(3)(1+) and 43 keV C(60). In particular, yields of tens of percent of molecular ions per projectile impact for the most abundant components can be observed with the 520 keV Au(400)(4+) probe. A comparison between 520 keV Au(400)(4+) time-of-flight-secondary ion mass spectrometry (TOF-SIMS) and matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) data showed a similar pattern and similar relative intensities of lipid components across a rat brain sagittal section. The abundant secondary ion yield of analyte-specific ions makes 520 keV Au(400)(4+) projectiles an attractive probe for submicrometer molecular mapping of native surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.