Abstract

The turn-off of the n-channel MOS-controlled thyristor (NMCT) is analyzed using two-dimensional simulation. A lateral NMOS-controlled thyristor structure, LNMCT, suitable for HVIC application is also proposed. It is found that the operation of a parasitic lateral n-p-n transistor in NMCT-type structures degrades the forward voltage drop and the turn-off capability and hence should be suppressed. The maximum controllable current in the NMCT is not only a function of internal parameters, but also depends on external supply voltage. This indicates that snubberless operation of an MCT-type device is not feasible. The advantages and disadvantages of the NMCT are compared with those of conventional MCT structures. The LNMCT turn-off speed is limited by the large amount of holes existing in the substrate, resulting in a turn-off waveform similar to that of an LIGBT. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call