Abstract

Lead is being considered as a possible amplifier of neutrons for fusion blankets. A simple one-group model of neutron multiplications in Pb is presented. Given the 14 MeV neutron cross section on Pb, the model predicts the multiplication. Given measured multiplications, the model enables the determination of the (n, 2n) and transport cross sections. Required for the model are: P—the collision probability for source neutrons in the Pb body—and W—an average collision probability for non-virgin, non-degraded neutrons. In simple geometries, such as a source in the center of a spherical shell, P and an approximate W can be expressed analytically in terms of shell dimensions and the Pb transport cross section. The model was applied to Takahashi's measured multiplications in Pb shells in order to understand the apparent very high multiplicative power of Pb. The results of the analysis are not consistent with basic energy-balance and cross-section magnitude constraints in neutron interaction theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call