Abstract

The Cct double-ring chaperonin complex of Saccharomyces cerevisiae is comprised of eight essential subunits, Cct1p-Cct8p, and assists the folding of substrates such as actins and tubulins. Single and multiple amino acid replacements of Cct6p were constructed by oligonucleotide-directed mutagenesis, including changes of charged to alanine residues and uncharged to charged residues. The replacements were targeted, in part, to residues corresponding to functionally critical regions identified in the published crystal structure of the Escherichia coli chaperonin, GroEL. Here, we report the critical hydrophobic residues and clusters of hydrophilic residues in regions corresponding to those from the apical domain of GroEL implicated in peptide binding and peptide release, and certain residues in the putative equatorial domain implicated in subunit-to-subunit interaction. In contrast to their homologous counterparts in Cct2p and Cct1p, the highly conserved putative ATP binding motifs of Cct6p were relatively amenable to mutations. Our data suggest that the entire Cct6p molecule might be essential for assembly of Cct complex and might participate in binding substrates. However, there appeared to exist a functional hierarchy in ATP binding/hydrolysis among Cct subunits, as suggested by the high tolerance of Cct6p to mutations within the putative ATP binding pocket.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.