Abstract

Solution-processable metal–halide perovskites recently opened a new route toward low-cost manufacture of photovoltaic cells. Converting sunlight into electrical energy depends on several factors among which a broad absorption across the solar spectrum and attractive charge transport properties are of primary importance. Hybrid perovskites meet such prerequisites, but despite foremost experimental research efforts, their understanding remains scanty. Here we show that in these materials the appropriate absorption and transport properties are afforded by the multibandgap and multivalley nature of their band structure. We also investigate the nature of the photoexcited species. Our analysis suggests exciton screening by collective orientational motion of the organic cations at room temperature, leading to almost free carriers. Molecular collective motion is also expected to couple to carrier diffusion at room temperature. In mixed halides, our interpretation indicates that doping might hinder collective molecular motions, leading to good transport properties despite alloying and local lattice strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.