Abstract
The field of wireless communications has benefited from multiple-input and multiple-output (MIMO) techniques. As researchers seek to apply MIMO (multistatic) techniques to radar and specifically to synthetic aperture radar (SAR), a key factor in determining MIMO application and performance is the level of correlation of signals from different receiver/transmitter pairs. The level of correlation determines whether a MIMO array falls into the category of a collocated array or a distributed array. The type of array dramatically affects which MIMO techniques may be performed and what advantages MIMO offers from conventional techniques. This paper presents models for calculating geometric correlation of multistatic SAR pixels using a ground-plane image formation. The models' results are compared to previous correlation models found in literature. A key result is that correlation depends on pixel resolution and not the number of individual scatterers. This paper concludes that most MIMO arrays operating on a single platform operate in the collocated regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.