Abstract

In this paper, we study a generalization of the classical multi-dimensional Erlang loss model with state-dependent arrival and service rates, in which customers at arrival occupy random quantities of various resources and release them at departure. Total amount of resources allocated to customers cannot exceed predefined maximum levels. There can be two types of customers: positive customers, which occupy positive quantities of resources, and negative customers, which occupy negative quantities of resources. Negative customers increase the amount of resources available to positive customers and therefore decrease blocking of positive customers caused by lack of resources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.