Abstract

Wireless channels with multiple transmit/receive antennas are known to provide a high spectral efficiency both when the channel is known to the receiver, and when the channel is not known to the receiver if the signal-to-noise ratio (SNR) is high. Here we analyze such systems at low SNR, which may find application in sensor networks and other low-power devices. The key point is that, since channel estimates are not reliable, it is often not reasonable to assume that the channel is known at the receiver at low SNR. In this unknown channel case, we show that for sensible input distributions, in particular all practical modulation schemes, the capacity is asymptotically quadratic in the SNR, /spl rho/, and thus much less than the known channel case where it exhibits a linear growth in /spl rho/. We show that under various signaling constraints, e.g., Gaussian modulation, unitary space-time modulation, and peak constraints, that mutual information is maximized by using a single transmit antenna. We also show that at low SNR, sending training symbols leads to a rate reduction in proportion to the fraction of training duration time so that it is best not to perform training. Furthermore, we show that the per-channel use mutual information is linear in both the number of receive antennas and the channel coherence interval.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.