Abstract

ABSTRACTMultiple melting behavior of high-speed melt-spun polylactide (PLA) fibers was investigated by temperature modulated differential scanning calorimetry (TMDSC) in the heating process with various modulation periods in the calorimeter. In the case of the as-spun PLA fibers taken-up at 1 km/min, a melting endothermic peak and a recrystallization exothermic peak appeared at the same peak temperature of 151°C in the reversing and non-reversing heat flows (RHF and NRHF), respectively, whereas at 168°C, an endothermic peak was observed in both the RHF and NRHF. On the other hand, the as-spun PLA fibers taken-up at a high-speed of 6 km/min showed the melting in both the RHF and NRHF, but the recrystallization behavior was not obvious in the NRHF at the shorter modulation period conditions. The obtained data were analyzed based on the kinetic modeling of melting proposed by Toda et al. The real and imaginary parts of the complex apparent heat capacity in the melting region showed a strong modulation period dependence for both the low- and high-speed spun fibers. The endothermic heat flow of melting was separated by extrapolating the frequency to zero. For the PLA fibers spun at 1 km/min, a set of melting and recrystallization peaks in the RHF and NRHF appeared even for the melting at 168°C. In other words, the simultaneous occurrence of melting and recrystallization was confirmed through this extrapolation. For the 6 km/min PLA fibers, the presence of an exothermic heat of recrystallization was clearly confirmed at a peak temperature of 164°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.