Abstract
Recent laboratory studies and analyses (Lai et al. Presented at the 2009 Rocky Mountain Petroleum Technology Conference, 14–16 April, Denver, CO, 2009) have shown that the Barree and Conway model is able to describe the entire range of relationships between flow rate and potential gradient from low- to high-flow rates through porous media. A Buckley and Leverett type analytical solution is derived for non-Darcy displacement of immiscible fluids in porous media, in which non-Darcy flow is described using the Barree and Conway model. The comparison between Forchheimer and Barree and Conway non-Darcy models is discussed. We also present a general mathematical and numerical model for incorporating the Barree and Conway model in a general reservoir simulator to simulate multiphase non-Darcy flow in porous media. As an application example, we use the analytical solution to verify the numerical solution for and to obtain some insight into one-dimensional non-Darcy displacement of two immiscible fluids with the Barree and Conway model. The results show how non-Darcy displacement is controlled not only by relative permeability, but also by non-Darcy coefficients, characteristic length, and injection rates. Overall, this study provides an analysis approach for modeling multiphase non-Darcy flow in reservoirs according to the Barree and Conway model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.