Abstract

An electro-active spherical balloon is susceptible to electromechanical instability which, for certain material models, can trigger substantial size change. Hence, the electro-active balloon can conveniently be employed for application as actuator or generator. Practical applications, however, require proper electrode protection from aggressive agents and electric safety. For this purpose, the active membrane can be sandwiched between two soft protective passive layers. In this paper, the theory of nonlinear electro-elasticity for heterogeneous soft dielectrics is applied to the investigation of the electromechanical response of multilayer electro-active spherical balloons, formed either by the active membrane only (single-layer balloon) or by the coated active membrane (multilayer balloon). Numerical results showing the influence of the soft passive layers on the electromechanical response of the active membrane are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.